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invariant can be constructed from only four corresponding points projected
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1 Introduction Brill, Haag & Pyton (1991) have recently introduced a
quadratic invariant based on the fundamental matrix of

The problem we address in this paper is that of recover- Longuet-Higgins (1981), which is computed from eight
ingrelative, non-metric, structure of a three-dimensional corresponding points. In Appendix E we show that
scene from two images, taken from different viewing t o- their result is equivalent to intersecting epipolar lines.
sitions. The relative structure information is in the form and therefore, is singular for certain viewing transfor-of an invariant that can be computed without any prior mations depending on the viewing geometry between the

knowledge of camera geometry, and under all central pro- two model views. Our projective invariant is not based

jections - including the case of parallel projection. The on an epipolar intersection, but is based directly on the

non-metric nature of the invariant allows the cameras to relative structure of the object, and does not suffer from

be internally uncalibrated (intrinsic parameters of cam- a ti essarfinding th at implies geter fbom
era re nknon).Theuniqe ntureof he nvarantal- any singularities, a finding that implies greater stabilityera are unknown). The unique nature of the invariant al- in the presence of errors.

lows the system to make no assumptions about existence The projective structure invariant, and the re-

of perspective distortions in the input images. Therefore, projection method that follows, is based on an exten-
any degree of perspective distortions is allowed, i.e., or- sion of Koenderink and Van-Doorn's representation of
thographic and perspective projections are treated alike, affine structure as an invariant defined with respect to
or in other words, no assumptions are made on the size a reference plane and a reference point. We start by in-
of field of view. troducing an alternative affine invariant, using two ref-

We envision this study as having applications both in erence planes (section 5), and it can easily be extended
the area of structure from motion and in the area of to projective space. As a result we obtain a projective
visual recognition. In structure from motion our contri- structure invariant (section 6).
bution is an addition to the recent studies of non-metric We show that the difference between the affine and
structure from motion pioneered by Koenderink and Van projective case lie entirely in the location of the epipoles,
Doom (1991) in parallel projection, followed by Faugeras i.e., given the location of epipoles both the afline and
(1992) and Mohr, Quan, Veillon & Boufama (1992) for projective structures are constructed by linear methods
reconstructing the projective coordinates of a scene up using the information captured from four corresponding
to an unknown projective transformation of 3D projec- points projected from four non-coplanar points in space.
tive space. Our approach is similar to Koenderink and In the projective case we need additional corresponding
Van Doorn's in the sense that we derive an invariant, points -solely for the purpose of recovering the location
based on a geometric construction, that records the 3D of the epipoles (Theorem 1, section 6).
structure of the scene as a variation from .two fixed ref- We show that the projective structure invariant can
erence planes measured along the line of sight. Unlike be recovered from two views - produced by parallel or
Faugeras and Mohr et al. we do not recover the projec- central projection - and six corresponding points, four
tive coordinates of the scene, and, as a result, we use a of which are assumed to be projected from four coplanar
smaller number of corresponding points: in additi3n to points in space (section 7.1). Alternatively, the projec-
the location of epipoles we need only four correspond- tive structure can be recovered from eight corresponding
ing points, coming from four non-coplanar points in the points, without assuming coplanarity of object points
scene, whereas Faugeras and Mohr et al. require corre- (section 8.1). The 8-point method uses the fundamental
spondences coming from five points in general position. matrix approach (Longuett-Higgins, 1981) for recover-

The second contribution of our study is to visual recog- ing the location of epipoles (as suggested by Faugeras,
nition of 3D objects from 2D images. We show that our 1992).
projective invariant can be used to predict novel views of Finally, we show that, for both schemes, it is possible
the object, given two model views in full correspondence to limit the viewing transformations to the group of rigid
and a small number of corresponding points with the motions, i.e., it is possible to work with perspective pro-
novel view. The predicted view is then matched against jection assuming the cameras are calibrated. The result,
the novel i1nput view, and if the two match, then the however, does not include orthographic projection.
novel view is considered to be an instance of the same ob- Experiments were conducted with both algorithms,
ject that gave rise to the two model views stored in mem- and the results show that the 6-point algorithm is sta-
ory. This paradigm of recognition is within the general ble under noise and under conditions that violate the
framework of alignmeat (Fischler and Bolles 1981, Lowe assumption that four object points are coplanar. The 8-
1985, Ullman 1989, Huttenlocher and Ullman 1987) and, point algorithm, although theoretically superior because
more specifically, of the paradigm proposed by Ullman of lack of the coplanarity assumption, is considerably
and Basri (1989) that recognition can proceed using only more seLsitive to noise.
2D images, both for representing the model, and when
matching the model to the input image. We refer to the 2 Why not Classical SFM?
problem of predicting a novel view from a set of model
views using a limited number of corresponding points, The work of Koenderink and Van Doorn (1991) on affine
as the problem of re-projection. structure from two orthographic views, and the work of

The problem of re-projection has been dealt with in Ullman and Basri (1989) on re-projection from two or-
the past primarily assuming parallel projection (Ull- thographic views, have a clear practical aspect: it is
man and Basri 1989, Koenderink and Van Doom 1991). known that at least three orthographic views are re-
For the more general case of central projection, Barret, 1 quired to recover metric structure, i.e., relative depth



(Ullman 1979, Huang & Lee 1989, Aloimonos & Brown the image plane is perpendicular to the projecting rays.
1989). Therefore, the suggestion to use affine structure The third problem is related to the way shape is
instead of metric structure allows a recognition system typically represented under the perspective projection
to perform re-projection from two-model views (Ullman model. Because the center of projection is also the ori-
& Basri), and to generate novel views of the object pro- gin of the coordinate system for describing shape, the
duced by affine transformations in space, rather than by shape difference (e.g., difference in depth, between two
rigid transformations (Koenderink & Van Doorn). object points), is orders of magnitude smaller than the

This advantage, of working with two rather than three distance to the scene, and this makes the computations
views, is not present under perspective projection, how- very sensitive to noise. The sensitivity to noise is re-
ever. It is known that two perspective views are sufficient duced if images are taken from distant viewpoints (large
for recovering metric structure (Roach & Aggarwal 1979, base-line in stereo triangulation), but that makes the
Longuett-Higgins 1981, Tsai & Huang 1984, Faugeras & process of establishing correspondence between points in
Maybank 1990). The question, therefore, is why look for both views more of a problem, and hence, may make the
alternative representations of structure, and new meth- situation even worse. This problem does not occur un-
ods for performing re-projection? der the assumption of orthographic projection because

There are three major problems in structure from mo- translation in depth is lost under orthographic projec-
tion methods: (i) critical dependence on an orthographic tion, and therefore, the origin of the coordinate system
or perspective model of projection, (ii) internal camera for describing shape (metric and non-metric) is object-
calibration, and (iii) the problem of stereo-triangulation. centered, rather than viewer-centered (Tomasi, 1991).

These problems, in isolation or put together, make
The first problem is the strict division between meth- much of the reason for the sensitivity of structure from

ods that assume orthographic projection and methods motion methods to errors. The recent work of Faugeras
that assume perspective projection. These two classes (19)adMh al(92)dreestepoemf

of mthos d no ovrla in hei doainof pplca- (1992) and Mohr et al. (1992) addresses the problem of
of methods do not overlap in their domain of applica- internal calibration by assuming central projection in-
tion. The perspective model operates under conditions stead of perspective projection. Faugeras and Mohr ef
of significant perspective distortions, such as driving on al. then proceed to reconstruct the projective coordi-
a stretch of highway, requires a relatively large field of nates of the scene. Since projective coordinates are mea-
view and relatively large depth variations between scene sured relative to the center of projection, this approach
points (Adiv 1989, Dutta & Synder 1990, Tomasi 1991, does not address the problem of stereo-triangulation or
Broida et al. 1990). The orthographic model, on the the problem of uniformity under both orthographic and
other hand, provides a reasonable approximation when th e problem iof u o dert p
the imaging situation is at the other extreme, i.e., small perspective projection models.
field of view and small depth variation between object 3 Camera Model and Notations
points (a situation for which perspective schemes often
break down). Typical imaging situations are at neither We assume that objects in the world are rigid and are
end of these extremes and, therefore, would be vulner- viewed under central projection. In central projection
able to errors in both models. From the standpoint of the center of projection is the origin of the camera coor-
performing recognition, this problem implies that the dinate frame and can be located anywhere in projective
viewer has control over his field of view - a property space. In other words, the center of projection can be
that may be reasonable to assume at the time of model a point in Euclidean space or an ideal point (such as
acquisition, but less reasonable to assume occurring at happens in parallel projection). The image plane is as-
recognition time. sumed to be arbitrarily positioned with respect to the

The second problem is related to internal camera cal- camera coordinate frame (unlike perspetive projection
ibration. The assumption of perspective projection in- where it is parallel to the xy plane). We refer to this as a
cludes a distinguishable point, known as the principal non-rigid camera configuration. The motion of the cam-
point, which is at the intersection of the optical axis and era, therefore, consists of the translation of the center of
the image plane. The location of the principal point is projection, rotation of the coordinate frame around the
an internal parameter of the camera, which may deviate new location of the center of projection, and followed by
somewhat from the geometric center of the image plane, tilt, pan, and focal length scale of the image plane with
and therefore, may require calibration. Perspective pro- respect to the new optical axis. This model of projection
jection also assumes that the image plane is perpendicu- will also be referred to as perspective projection with an
lar to the optical axis and the possibility of imperfections uncalibrated camera.
in the camera requires, therefore, the recovery of the two We also include in our derivations the possibility of
axes describing the image frame, and of the focal length. having a rigid camera configuration. A rigid camera is
Although the calibration process is somewhat tedious, it simply the familiar model of perspective projection in
is sometimes necessary for many of the available com- which the center of projection is a point in Euclidean
mercial cameras (Brown 1971, Faig 1975, Lenz and Tsai space and the image plane is fixed with respect to the
1987, Faugeras, Luong and Maybank 1992). The prob- camera coordinate frame. A rigid camera motion, there-
lem of calibration is lesser under orthographic projection fore, consists of translation of the center of projection
because the projection does not have a distinguishable followed by rotation of the coordinate frame and focal
ray; therefore any point can serve as an origin, however length scaling. Note that a rigid camera implicitly as-
must still be considered because of the assumption that sumes internal calibration, i.e., the optical axis pierces



on the reference plane). Note that the location of 7' is
known via the affine transformation determined by the

a reference projections of the three reference points. Finally, let
Splane Q be the fourth reference point (not on the reference

plane). Using a simple geometric drawing, the affine

structure invariant is derived as follows.
Consider Figure 1. The projections of the reference

point Q and an arbitrary point of interest P form two
, /similar trapezoids: PPp'f' and QQq'q'. From similarity

of trapezoids we have,

%\q IP - 1 e - PI

%% % By assuming that q, q' is a given corresponding point, we
V 2 •obtain a shape invariant that is invariant under parallel

projection (the object points are fixed while the camera
changes the location and position of the image plane
towards the projecting rays).

Before we extend this result to central projection by
Figure 1: Koenderink and Van Doorn's Affine Structure. using projective geometry, we first describe a different

affine invariant using two reference planes, rather than
one reference plane and a reference point. The new affine

through a fixed point in the image and the image plane invariant is the one that will be applied later to central
is perpendicular to the optical axis. projection.

We denote object points in capital letters and image
points in small letters. If P denotes an object point in 3D 5 Affine Structure Using Two
space, p, p', p" denote its projections onto the first, sec- Reference Planes
ond and novel projections, respectively. We treat image
points as rays (homogeneous coordinates) in 3D space, We make use of the same information - the projections
and refer to the notation p = (z, y, 1) as the standard of four non-coplanar points - to set up two reference
representation of the image plane. We note that the planes. Let Pi, j = 1, ...,4, be the four non-coplanar
true coordinates of the image plane are related to the reference points in space, and let pi .-- pý be their ob-
standard representation by means of a projective trans- served projections in both views. The points P1, P2, P3
formation of the plane. In case we deal with central and P2 , P3, P4 lie on two different planes, therefore, we
projection, all representations of image coordinates are can account for the motion of all points coplanar with
allowed, and therefore, without loss of generality we work each of these two planes. Let P be a point of interest,
with the standard representation (more on that in Ap- not coplanar with either of the reference planes, and let
pendix A). P and P be its projections onto the two reference planes

along the ray towards the first view.
4 Affine Structure: Koenderink and Consider Figure 2. The projection of P, P and P onto

Van Doorn's Version p, 7/ and g respectively, gives rise to two similar trape-
zoids from which we derive the following relation:

The affine structure invariant described by Koenderink p - ._1 = l - l
and Van Doorn (1991) is based on a geometric con- -p =
struction using a single reference plane, and a reference " P - P1 I, - p'1
point not coplanar with the reference plane. In affine The ratio ap is invariant under parallel projection. There
geometry (induced by parallel projection), it is known is no particular advantage for preferring rp over -t as
from the fundamental theorem of plane projectivity, that a measure of affine structure, but as will be described
three (non-collinear) corresponding points are sufficient below, this new construction forms the basis for extend-
to uniquely determine all other correspondences (see Ap- ing affine structure to projective structure, whereas the
pendix A for more details on plane projectivity under single reference plane construction does not (see Ap-
affine and projective geometry). Using three correspond- pendix D for proof).
ing points between two views provides us, therefore, with In the projective plane, we need four coplanar points
a transformation (affine transformation) for determining to determine the motion of a reference plane. We show
the location of all points of the plane passing through that, given the epipoles, only three corresponding points
the three reference points in the second image plane. for each reference plane are sufficient for recovering the

Let P be an arbitrary point in the scene projecting associated projective transformations induced by those
onto p,p' on the two image planes. Let P be the projec- planes. Altogether, the construction provides us with
tion of P onto the reference plane along the ray towards four points along each epipolar line. The similarity of
the first image plane, and let 9 be the projection of P trapezoids in the affine case turns, therefore, into a cross-
onto the second image plane (p' and 9 coincide if P is ratio in the projective case.



P reference

reeference

imaqe
plane ' laneplane

........- .. IN

V2V
S V v,

11

V 2" Figure 3: Definition of projective shape as the cross ratio
of p', P', P, V1.

Figure 2: Affine structure using two reference planes. as the affine invariant defined in section 5 for parallel
projection.

The cross-ratio ap is a direct extension of the affine
This leads to the result (Theorem 1) that, in addition structure invariant defined in section 5 and is referred

to the epipoles, only four corresponding points, projected to as projective structure. We can use this invariant to
from four non-coplanar points in the scene, are sufficient reconstruct any novel view of the object (taken by a
for recovering the projective structure invariant for all non-rigid camera) without ever recovering depth or even
other points. The epipoles can be recovered by either projective coordinates of the object.
extending the Koenderink and Van Doom (1991) con- Having defined the projective shape invariant, and as-
struction to projective space using six points (four of suming we still are given the locations of the epipoles,
which are assumed to be coplanar), or by using other we show next how to recover the projections of the two
methods, notably those based on the Longuet-Higgins reference planes onto the second image plane, i.e., we
fundamental matrix. This leads to projective structure describe the computations leading to /7 and g.
from eight points in general position. Since we are working under central projection, we

need to identify four coplanar points on each reference
6 Projective Structure plane. In other words, in the projective geometry of the
We assume for now that the location of both epipoles is plane, four corresponding points, no three of which are
known, and we will address the problem of finding the collinear, are sufficient to determine uniquely all other
epipoles later. The epipoles, also known as the foci of ex- correspondences (see Appendix A, for more details). We
pansion, are the intersections of the line in space connect- must, therefore, identify four corresponding points that
ing the two centers of projection and the image planes. are projected from four coplanar points in space, and
There are two epipoles, one on each image plane - the then recover the projective transformation that accounts
epipole on the second image we call the left epipole, and for all other correspondences induced from that plane.
the epipole on the first image we call the right epipole. The following proposition states that the corresponding
The image lines emanating from the epipoles are known epipoles can be used as a fourth corresponding point for
as the epipolar lines, any three corresponding points selected from the pair of

Consider Figure 3 which illustrates the two reference images.
plane construction, defined earlier for parallel projection, Proposition 1 A projective transformation, A, that is
now displayed in the case of central projection. The determined from three arbitrary, non-collinear, corre-
left epipole is denoted by V1, and because it is on the sponding points and the corresponding epipoles, is a pro-
line V, V2 (connecting the two centers of projection), the jective transformation of the plane passing through the
line PV1 projects onto the epipolar line pVi. Therefore, three object points which project onto the correspond-
the points P' and P5 project onto the points P and 9', ing image points. The transformation A is an induced
which are both on the epipolar line p'V%. The points epipolar transformation, i.e., the ray Ap intersects the
p',P',b' and V1 are collinear and projectively related to epipolar line p'% for any arbitrary image point p and its
P, P, P, V1, and therefore have the same cross-ratio: corresponding point p'.

IP - 51 1V1 - f l _p - ' IV, -Pl Comment: An epipolar transformation F is a mapping
P =-': IT - P 1  -' - -= -/ - between corresponding epipolar lines and is determined

(not uniquely) from three corresponding epipolar lines
Note that when the epipole V, becomes an ideal point and the epipoles. The induced point transformation is
(vanishes along the epipolar line), then a. is the same E = (F-i)t (induced from the point/line duality of pro-



jective geometry, see Appendix C for more details on then ap = jr (see Appendix B for more details). This
epipolar transformations). way of computing the cross-ratio is preferred over the

Proof: Let pj - pý, j = 1,2, 3, be three arbitrary more familiar cross-ratio of four collinear points, because
corresponding points, and let V1 and V, denote the left it enables us to work with all elements of the projective
and right epipoles. First note that the four points pj and plane, including ideal points (a situation that arises, for
V, are projected from four coplanar points in the scene, instance, when epipolar lines are parallel, and in general
The reason is that the plane defined by the three object under parallel projection).
points Pj intersects the line V1 V2 connecting the two We have therefore shown the following result:
centers of projection, at a point - regular or ideal. That Theorem 1 In the case where the location of epipoles
point projects onto both epipoles. The transformation are known, then four corresponding points, coming from
A, therefore, is a projective transformation of the plane four non-coplanar points in space, are suficient for com-
passing through the three object points P1 , P2 , P3 . Note fut no-cpro intsiin s prce aricnt for cothe
that A is uniquely determined provided that no three of puting the projective structure invariant a1 for all other
the four points are collinear. points in space projecting onto corresponding points in

Let urY= forsomea y points pe B, l both views, for all central projections, including parallelLet jq3' = Ap for some arbitrary point p. Because lines prjcin

are projective invariants, any point along the epipolar projection.

line pV, must project onto the epipolar line p'V%. Hence, This result shows that the difference between parallel
A is an induced epipolar transformation. 0 and central projection lies entirely on the epipoles. In

Given the epipoles, therefore, we need just three points both cases four non-coplanar points are sufficient for ob-
to determine the correspondences of all other points taining the invariant, but in the parallel projection case
coplanar with the reference plane passing through the we have prior kno vledge that both epipoles are ideal,
three corresponding object points. The transformation therefore they are not required for determining the trans-
(collineation) A is determined from the following equa- formations A and E (in other words, A and E are affine
tions: transformations, more on that in Section 7.2).

Apj = pjp, j = 1,2,3 Another point to note with this result is that the
AV, = pV1, minimal number of corresponding points needed for re-

projection is smaller than the previously reported num-
where p, pe are unknown scalars, and A 3 sl = 1. One ber (Faugeras 1992, Mohr et al. 1992) for recovering
can eliminate p, pt from the equations and solve for the the projective coordinates of object points. Faugeras
matrix A from the three corresponding points and the shows that five corresponding points coming from five
corresponding epipoles. That leads to a linear system points in general position (i.e., no four of them are copla-
of eight equations, and is described in more detail in nar) can be used, together with the epipoles, to recover

ApnIf P A. PP ethe projective coordinates of all other points in space.
If P1 , o i, PA define the first reference plane, the trans- Because the projective structure invariant requires only

formation A determines the location of /' for all other four points, this implies that re-projection is done more

points p (07 and p' coincide if P is coplanar with the first directlytha thru full reontction of p re
refeenc plne).In the wors, e hve tat V =Ap. directly than through full reconstruction of projective

reference plane). In other words, we have thate s = Ap. coordinates, and therefore is likely to be more stable.
Note that l' is not necessarily a point on the second im- We next discuss algorithms for recovering the loca-
age plane, but it is on the line V2 P. We can determine tion of epipoles. The problem of recovering the epipoles
its location on the second plane by normalizing Ap such is well known and several approaches have been sug-
that its third component is set to 1. gested in the past (Longuet-Higgins and Prazdny 1980,

Similarly, let P2, P3 , P4 define the second reference Rieger-Lawton 1985, Faugeras and Maybank 1990, Hil-
plane (assuming the four object points Pi, j = 1, ...,4, dreth 1991, Faugeras 1992, Faugeras, Luong and May-
are non-coplanar). The transformation E is uniquely bank 1992). We start with a method that requires six
determined by the equations corresponding points (two additional points to the four

Epi = pip', j = 2,3,4 we already have). The method is a direct extension of theV pV Koenderink and Van Doorn (1991) construction in par-
allel projection, and was described earlier by Lee (1988)

and determines all other correspondences induced by the for the purpose of recovering the translational compo-
second reference plane (we assume that no three of the nent of camera motion.
four points used to determine E are collinear). In other The second algorithm for locating the epipoles is
words, Ep determines the location of j/ up to a scale adopted from Faugeras (1992) and is based on the fun-
factor along the ray V2 P. damental matrix of Longuet-Higgins (1981).

Instead of normalizing Ap and Ep we compute ap
from the cross-ratio of the points represented in homo- 7 Epipoles from Six Points
geneous coordinates, i.e., the cross-ratio of the four rays
V2p', V2 P, V2 #/, V2 1V, as follows: Let the rays p', V1 be We can recover the correspondences induced from the
represented as a linear combination of the rays ' = Ap first reference plane by selecting four corresponding
and j/ = Ep, i.e., points, assuming they are projected from four coplanar

object points. Let pi = (zi, yj, 1) and pý = (zx,yý, 1)
and j = 1, ... , 4 represent the standard image coordinates

V1 = P' + k'i, of the four corresponding points, no three of which are



P 6In the case where more than two epipolar lines are
available (such as when more than six corresponding
points are available), one can find a least-squares so-

p reference lution for the epipole by using a principle component
5 plans analysis, as follows. Let B be a k x 3 matrix, where

.. aq • "..each row represents an epipolar line. The least squares
p .' image solution to V1 is the unit eigenvector associated with the

ime 6 % .. plane smallest eigenumber of the 3 x 3 matrix B t B. Note that
plane p; % 6 this can be done analytically because the characteristic

P, P "equation is a cubic polynomial.
5 ,, Altogether, we have a six point algorithm for recover-............- ing both the epipoles, and the projective structure a

..... and for performing re-projection onto any novel view.
.le..ft........ We summarize in the following section the 6-point algo-(left opipolo) v rithm.

7.1 Re-projection Using Projective Structure:
Figure 4: The geometry of locating the left epipole using 6-point Algorithm
two points out of the reference plane. We assume .we are given two model views of a 3D object,

and that all points of interest are in correspondcce. We
collinear, in both projections. Therefore, the transfor- assume these correspondences can be based on measures
mation A is uniquely determined by the following equa- of correlation, as used in optical-flow methods (see also
tions, Shashua 1991, Bachelder & Ullman 1992 for methods for

pipj = Apj. extracting correspondences using combination of optical

Let j3 = Ap be the homogeneous coordinate representa- flow and affine geometry).

tion of the ray V2 P6, and let 3- A-'p'. Given a novel view we extract six corresponding points
(with one of the model views): pj - pý - Pj,

Having accounted for the motion of the eferen j = 1, ..., 6. We assume the first four points are projected
plane, we can easily find the location of the epipoles (in from four coplanar points, and the other corresponding
standard coordinates). Given two object points P5 , P6  points are projected from points that are not on the ref-
that are not on the reference plane, we can find both pitsae prje d from pois that ae notuon theerence plane. Without loss of generality, we assume theepipoles by observing that ý-l is on the left epipolar standard coordinate representation of the image planes,
line, and similarly thatve is on the right epipolar line. i.e., the image coordinates are embedded in a 3D vec-
Stated formally, we have the following proposition: tor whose third component is set to 1 (see Appendix A).
Proposition 2 The left epipole, denoted by V1, is at the The computations for recovering projective shape and
intersection of the line p and the line p6J/6. Similarly, performing re-projection are described below.
the right epipole1 denoted by V,, is at the intersection of 1: Recover the transformation A that satisfies pjp =

Ap, j = 1, ...,4. This requires setting up a linear
Proof: It is sufficient to prove the claim for one of the system of eight equations (see Appendix A). Apply

epipoles, say the left epipole. Consider Figure 4 which the transformation to all points p, deL iting 1' = Ap.
describes the construction geometrically. By construc- Also recover the epipoles V, = (p5 x f) x (p6 x 16)
tion, the line P5 P5 V1 projects to the line p544 via V2  and V, = (ps x A-lp5) x (P6 x A-lp').
(points and lines are projective invariants) and therefore 2: Recover the transformation E that satisfies pV1 =
they are coplanar. In particular, V, projects to V1 which EV,. and pjpj = Ep, j = 4,5,6.
is located at the intersection of p'.5 and Vi V2 . Simi-
larly, the line p'J4 intersects VIV 2 at ý1. Finally, V1 and 3: Compute the cross-ratio of the points p', Ap, Ep, V1,
S must coincide because the two lines p'•_i and p'V are for all points p and denote that by ap (see Ap-
coplanar (both are on the image plane). pendix B for details on computing the cross-ratio

Algebraically, we can recover the ray V I2, or V1 up to of four rays).
a scale factor, using the following formula: 4: Perform step 1 between the first and novel view:

V1 = (p5 x A) x (A X P6). recover A that satisfies pjp!" = Apj, j = 1,...,4,

Note that V1 is defined with respect to the standard coor- apply A to all points p and denote that by P' = Ap,
dinate frame of the second camera. We treat the epipole recover the epipoles 6, - (Pg x l) x (p'' x ') and
V1 as the ray VIV2 with respect to V2, and the epipole V1'. = (P5 x A-pg) x (p5 x .4-p').
V, as the same ray but with respect to V1. Note also 5: Perform step 2 between the first and novel view:
that the third component of V, is zero if epipolar lines Recover the transformation E that satisfies PV,, =
are parallel, i.e., V1 is an ideal point in projective terms kV,. and pjp'! = Epi, j = 4,5,6.
(happening under parallel projection, or when the non-
rigid camera motion brings the image plane to a position 6: For every point p, recover p" from the cross-ratio ap
where it is parallel to the line V, V2 ). 6 and the three rays Ap, Ep, V,. Normalize p" such



that its third coordinate is set to 1. 8 Epipoles from Eight Points

The entire procedure requires setting up a linear sys- We adopt a recent algorithm suggested by Faugeras
tern of eight equations four times (Step 1,2,4,5) and corn- (1992) which is based on Longuet-Higgins' (1981) funda-
puting cross-ratios (linear operations as well), mental matrix. The method is very simple and requires

eight corresponding points for recovering the epipoles.W'e discuss below an important property of this pro- Let F be an epipolar transformation, i.e., Fi = pi',

cedure which is the transparency with respect to projec- where 1 - Vt x p and i' - V, x p' are corresponding

tion model: central and parallel projection are treated

alike - a property which has implications on stability epipolar lines. We can rewrite the projective relation of

of re-projection no matter what degree of perspective epipolar lines using the matrix form of cross-products:
distortions are present in the images. F(V,. x p) = F[V,.]p = pl',

where [V,.] is a skew symmetric matrix (and hence has
7.2 The Case of Parallel Projection rank 2). From the point/line incidence property we have

The construction for obtaining projective structure is that p'.l' = 0 and therefore, p'tF[V,]p = 0, or p' Hp = 0
well defined for all central projections, including the case where H = F[VJ. The matrix H is known as the fun-

where the center of projection is an ideal point, i.e., such damental matrix introduced by Longuet-Higgins (1981),
as happening with parallel projection. The construction and is of rank 2. One can recover H (up to a scale factor)

has two components: the first component has to do with directly from eight corresponding points, or by using a

recovering the epipolar geometry via reference planes, principle components approach if more than eight points

and the second component is the projective invariant ap. are available. Finally, it is easy to see that

From Proposition 1 the projective transformations A HV,. = 0,
and E can be uniquely determined from three corre- and therefore the epipole V, can be uniquely recovered
sponding points and the corresponding epipoles. If both (up therefore the Note that te deterlynentere
epipoles are ideal, the transformations become affine (up to a scale factor). Note that the determinant of
transformations of the plane (an affine transformation the first principle minor of H vanishes in the case where
separates ideal points from Euclidean points). All other V,. is an ideal point, i.e., h1lh 22 - h1 2h2 1 = 0. In that
possibilities (both epipoles are Euclidean, one epipole case, the z,y components of V, can be recovered (up to
Euclidean and the other epipole ideal) lead to projective a scale factor) from the third row of H. The epipoles,
transformations. Because a projectivity of the projec- therefore, can be uniquely recovered under both central
tive plane is uniquely determined from any four points and parallel projection. We have arrived at the following
on the projective plane (provided no three are collinear), theorem:
the transformations A and E are uniquely determined Theorem 2 In the case where we have eight correspond-
under all situations of central projection - including ing points of two views taken under central projection
parallel projection. (including parallel projection), four of these points, com-

The projective invariant ap is the same as the one ing from four non-coplanar points in space, are suffi-
defined under parallel projection (Section 5) - affine cient for computing the projective structure invariant a.p
structure is a particular instance of projective structure for the remaining four points and for all other points in
in which the epipole V, is an ideal point. By using the space projecting onto corresponding points in both views.
same invariant for both parallel and central projection, We summarize in the following section the 8-point
and because all other elements of the geometric construc- scheme for reconstructing projective structure and per-
tion hold for both projection models, the overall system forming re-projection onto a novel view.
is transparent to the projection model being used.

The first implication of this property has to do with 8.1 8-point Re-projection Algorithm
stability. Projective structure does not require any per- We assume we have eight corresponding points between
spective distortions, therefore all imaging situations can two model views and the novel view, pj - p ' -.

be handled - wide or narrow field of views. The second j = 1, ..., 8, and that the first four points are comhing from
implication is that 3D visual recognition from 2D images four non-coplanar points in space. The computations
can be achieved in a uniform manner with regard to the for recovering projective structure and performing re-
projection model. For instance, we can recognize (via re- projection are described below.
projection) a perspective image of an object from only 1: Recover the fundamental matrix H (up to a scale
two orthographic model images, and in general any com-
bination of perspective and orthographic images serving factor) that satisfies p0tHp, j = 1, ... ,8. The right
as model or novel views is allowed. epipole V, then satisfies HV,. 0. Similarly, the

The results so far required prior knowledge (or as- left epipole is recovered from the relation p0. p and

sumption) that four of the corresponding points are com- fV, = 0.
ing from coplanar points in space. This requirement can 2: Recover the transformation A that satisfies pV =
be avoided, using two more corresponding points (mak- AV, and pjp'. = Apj, j = 1,2,3. Similarly, recover
ing eight points overall), and is described in the next the transformation E that satisfies pV1 = EVl, and
section. 7 pjpý = Ep,, j - 2,3,4.



3: Compute a.p as the cross-ratio of p/, Ap, Ep, V1, for P
all points p.

4: Perform step 1 and 2 between the first and novel P
view: recover the epipoles V,, Vi,,, and the trans-

formations A and k.

5: For every point p, recover p" from the cross-ratio cip
and the three rays Ap, Ep, V.,,. Normalize P" such
that its third coordinate is set to 1.

We discuss next the possibility of working with a rigid ....,
camera (i.e., perspective projection and calibrated cam- . ...
era). .-...

v2

9 The Rigid Camera Case V. " .................

The advantage of the non-rigid camera model (or the
central projection model) used so far is that images can
be obtained from uncalibrated cameras. The price paid Figure 5: Illustration that projective shape can be re-
for this property is that the images that produce the covered only up to a uniform scale (see text).
same projective structure invariant (equivalence class of
images of the object) can be produced by applying non-
rigid transformations of the object, in addition to rigid To determine the reflection component, it is sufficient
transformations, to observe a third corresponding point P3 - p'. The

In this section we show that it is possible to verify object point P3 is along the ray V1p3 and therefore has

whether the images were produced by rigid transfor- the coordinates a 3p3 (w.r.t. the first camera coordinate

mations, which is equivalent to working with perspec- frame), and is also along the ray V2p'3 and therefore has

tive projection assuming the cameras are internally cal- the coordinates aWp3 (w.r.t. the second camera coordi-

ibrated. This can be done for both schemes presented nate frame). We note that the ratio between a3 and

above, i.e., the 6-point and 8-point algorithms. In both a3 is a positive number. The change of coordinates is
cases we exclude orthographic projection and assume represented by:

only perspective projection. 63V- + 0a3Rp3 = a
In the perspective case, the second reference plane is where P• is an unknown constant. If we multiply both

the image plane of the first model view, and the trans- sides of the equation by l, j = 1,2,3, the term #V,
formation for projecting the second reference plane onto drops out, because V,. is incident to all left epipolar lines,
any other view is the rotational component of camera and after substituting l! with 1 R, we are left with,
motion (rigid transformation). We recover the rota-
tional component of camera motion by adopting a re- a 3l! .P3 = a3!ý p,
suit derived by Lee (1988), who shows that the rota- which is sufficient for determining the sign of 1. El
tional component of motion can be uniquely determined The rotation matrix R can be uniquely recovere•[ from
from two corresponding points and the corresponding any three corresponding points and the corresponding
epipoles. We then show that projective structure can be epipoles. Projective structure can be reconstructed by
uniquely determined, up to a uniform scale factor, from replacing the transformation E of the second reference
two calibrated perspective images. plane, with the rigid transformation R (which is equiv-

Proposition 3 (Lee, 1988) In the case of perspective alent to treating the first image plane as a reference
projection, the rotational component of camera motion plane). We show next that this can lead to projective
can be uniquely recovered, up to a reflection, from two structure up to an unknown uniform scale factor (unlike
corresponding points and the corresponding epipoles. the non-rigid camera case).
The reflection component can also be uniquely deter- Proposition 4 In the perspective case, the projective
mined by using a third corresponding point, shape constant ap can be determined, from two views,

Proof: Let E = A x V, and ij = pj x V., j = 1,2 at most up to a uniform scale factor.

be two corresponding epipolar lines. Because R is an or- Proof: Consider Figure 5, and let the effective trans-

thogonal matrix, it leaves vector magnitudes unchanged, lation be V2 - V, = k(V 2 - V1), which is the true trans-

and we can normalize the length of 1', 1', V1 to be of the lation scaled by an unknown factor k. Projective shape,
same length of 11, 12, V,, respectively. We have therefore, ap, remains fixed if the scene and the focal length of the

I' = RIj, j = 1,2, and V1 = RV,, which is sufficient for first view are scaled by k: from similarity of triangles we

4etermining R up to a reflection. Note that because R have,
is a rigid transformation, it is both an epipolar and an k = V, - V2 = p.-V. = f,.
induced epipolar transformation (the induced transfor- V1 - V2  p- VI 1
mation E is determined by E = (R- 1 ), therefore E = R P. - V, P. - V2
because R is an orthogonal matrix). 8 1;- V - P - V2



the corresponding points be projected from four copla-
nar points in space, it is of special interest to see how
the method behaves under conditions that violate this
assumption, and under noise conditions in general. The

/ stability of the 8-point algorithm largely depends on the
/ method for recovering the epipoles. The method adopted

-// t - from Faugeras (1992), described in Section 8, based on
S-- ----- -the fundamental matrix, tends to be very sensitive to

- noise if the minimal number of points (eight points) are
• used. We have, therefore, focused the experimental error

* analysis on the 6-point scheme.

Figure 6 illustrates the experimental set-up. The ob-
image plane object points ject consists of 26 points in space arranged in the follow-

ing manner: 14 points are on a plane (reference plane)
ortho-parallel to the image plane, and 12 points are out

Figure 6: The basic object configuration for the experi- of the reference plane. The reference plane is located
mental set-up. two focal lengths away from the center of projection (fo-

cal length is set to 50 units). The depth of out-of-plane
points varies randomly between 10 to 25 units away from

where f, is the scaled focal length of the first view. Since the reference plane. TL. x, y coordinates of all points,
the magnitude of the translation along the line V1 V2 is except the points P1 .... P6, vary randomly between 0
irrecoverable, we can assume it is null, and compute ap - 240. The 'privileged' points PI, ... , P 6 have x, y co-
as the cross-ratio of p', Ap, Rp, VI which determines pro- ordinates that place these points all around the object
jective structure up to a uniform scale. a (clustering privileged points together will inevitably con-

Because ap is determined up to a uniform scale, we tribute to instability).
need an additional point in order to establish a common The first view is simply a perspective projection of the
scale during the process of re-projection (we can use one object. The second view is a result of rotating the object

of the existing six or eight points we already have). We around the point (128,128,100) with an axis of rotation
obtain, therefore, the following result: described by the unit vector (0.14,0.7,0.7) by an an-

Theorem 3 In the perspective case, a rigid re- gle of 29 degrees, followed by a perspective projection
projection from two model views onto a novel view is pos- (note that rotation about a point in space is equivalent
sible, using four corresponding points coming from four to rotation about the center of projection followed by
non-coplanar points, and the corresponding epipoles. translation). The third (novel) view is constructed in a
The projective structure computed from two perspective similar manner with a rotation around the unit vector
images, is invariant up to an overall scale factor. (0.7,0.7,0.14) by an angle of 17 degrees. Figure 7 (first

Orthographic projection is excluded from this result row) displays the three views. Also in Figure 7 (second
because it is well known that the rotational component row) we show the result of applying the transformation
cannot be uniquely determined from two orthographic due to the four coplanar points P1, ..-,P4 (Step 1, see Sec-
views (Ullman 1979, Huang and Lee 1989, Aloimonos tion 7.1) to all points in the first vie%-. We see that all
and Brown 1989). To see what happens in the case of the coplanar points are aligned with their correspond-
parallel projection note that the epipoles are vectors on ing points in the second view, and all other points are
the zy plane of their coordinate systems (ideal points), situated along epipolar lines. The display on the right
and the epipolar lines are two vectors perpendicular to in the second row shows the final re-projection result (8-
the epipole vectors. The equation RV, = Vi takes care point and 6-point methods produce the same result). All
of the rotation in plane (around the optical axis). The points re-projected from the two model views are accu-
other two equations R/i = 1i, j = 1,2, take care only rately (noise-free experiment) aligned with their corre-
of rotation around the epipolar directin - rotation sponding points in the novel view.
around an axis perpendicular to the epipolar direction The third row of Figure 7 illustrates a more challeng-
is not accounted for. The equations for solving for R ing imaging situation (still noise-free). The sEcond view
provide a non-singular system of equations but do pro- is orthographically projected (and scaled by 0.5) follow-
duce a rotation matrix with no rotational components ing the same rotation and translation as before, and the
around an axis perpendicular to the epipolar direction. novel view is a result of a central projection onto a tilted

image plane (rotated by 12 degrees around a coplanar
10 Simulation Results Using Synthetic axis parallel to the x-axis). We have therefore the situ-

Objects ation of recognizing a non-rigid perspective projection
from a novel viewing position, given a rigid perspec-

We ran simulations using synthetic objects to illustrate tive projection and a rigid orthographic projection from
the re-projection process using the 6-point scheme under two model viewing positions. The 6-point re-projection
various imaging situations. We also tepted the robust- scheme was applied with the result that all re-projected
ness of the re-projection method under various types of points are in accurate alignment with their correspond-
noise. Because the 6-point scheme requires that four of 9 ing points in the novel view. Identic-l results were ob-
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Figure 7: Illustration of Re-projection. Row 1 (left to right): Three views of the object, two model views and a
novel view, constructed by rigid motion following perspective projection. The filled dots represent p1,-.., p4 (coplanar
points). Row 2: Overlay of the second view and the first view following the transformation due to the reference
plane (Step 1, Section 7.1). All coplanar points are aligned with their corresponding points, the remaining points are
situated along epipolar lines. The righthand display is the result of re-projection - the re-projected image perfectly
matches the novel image (noise-free situation). Row 3: The lefthand display shows the second view which is now
orthographic. The middle display shows the third view which is now a perspective projection onto a tilted image
plane. The righthand display is the result of re-projection which perfectly matches the novel view.
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served with the 8-point algorithms, lower than the noise associated with other points, for
The remaining experiments, discussed in the follow- the reason that we are interested in tracking points of

ing sections, were done under various noise conditions. interest that are often associated with distinct inten-
We conducted three types of experiments. The first ex- sity structure (such as the tip of the eye in a picture
periment tested the stability under the situation where of a face). Correlation methods, for instance, are known
P,.....P 4 are non-coplanar object points. The second to perform much better on such locations, than on ar-
experiment tested stability under random noise added eas having smooth intensity change, or areas where the
to all image points in all views, and the third experi- change in intensity is one-dimensional. We therefore ap-
ment tested stability under the situation that less noise plied a level of 0-0.3 perturbation to the x and y coor-
is added to the privileged six points, than to other points. dinates of the six points, and a level of 0-1 to all other

points (as before). The results are shown in Figure 10.
10.1 Testing Deviation from Coplanarity The average pixel error over 10 trials fluctuates around
In this experiment we investigated the effect of translat- 0.5 pixels, and the re-projection shown for a typical trial
ing P1 along the optical axis (of the first camera position) (average error 0.52, maximal error 1.61) is in relatively
from its initial position on the reference plane (z = 100) good correspondence with the novel view. With larger
to the farthest depth position (z = 125), in increments perturbations at a range of 0-2, the algorithm behaves
of one unit at a time. The experiment was conducted us- proportionally well, i.e., the average error over 10 trials
ing several objects of the type described above (the six is 1.37.
privileged points were fixed, the remaining points were
assigned random positions in space in different trials), 11 Summary
undergoing the same motion described above (as in Fig- In this paper we focused on the problem of recovering
ure 7, first row). The effect of depth translation to the relative, non-metric, structure from two views of a 3D
level z = 125 on the location of p, is a shift of 0.93 pix- object. Specifically, the invariant structure we recover
els, on p', is 1.58 pixels, and on the location of p',' is 3.26 does not require internal camera calibration, does not
pixels. Depth translation is therefore equivalent to per- involve full reconstruction of shape (Euclidean or pro-

eturbing the location of the projections of P1 by various jective coordinates), and treats parallel and central pro-
degrees (depending on the 3D motion parameters). jection as an integral part of one unified system. We

Figure 8 shows the average pixel error in re-projection have also shown that the invariant can be used for the
over the entire range of depth translation. The average purposes of visual recognition, within the framework of
pixel error was measured as the average of deviations the alignment approach to recognition.
from the re-projected point to the actual location of the The study is based on an extension of Koenderink and
corresponding point in the novel view, taken over all Van Doorn's representation of affine structure as an in-
points. Figure 8 also displays the result of re-projection variant defined with respect to a reference plane and
for the case where Pi is at z = 125. The average error a reference point. We first showed that the KV affine
is 1.31, and the maximal error (the point with the most invariant cannot be extended directly to a projective in-
deviation) is 7.1 pixels. The alignment between the re- variant (Appendix D), but there exists another affine in-
projected image and the novel image is, for the most variant, described with respect to two reference planes,
part, fairly accurate. that can easily be extended to projective space. As a

10.2 Situation of Random Noise to all Image result we obtained the projective structure invariant.
Locations We have shown that the difference between the affine

and projective case lie entirely in the location of epipoles,
We next add random noise to all image points in all i.e., given the location of epipoles both the affine and
three views (P1 is set back to the reference plane). This prcjective structure are constructed from the same infor-
experiment was done repeatedly over various degrees of mation captured by four corresponding points projected
noise and over several objects. The results shown here from four non-coplanar points in space. Therefore, the
have noise between 0-1 pixels randomly added to the z additional corresponding points in the projective case
and y coordinates separately. The maximal perturbation are used solely for recovering the location of epipoles.
is therefore V2, and because the direction of perturba- We have shown that the location of epipoles can be
tion is random, the maximal error in relative location is recovered under both parallel and central projection us-
double, i.e., 2.8 pixels. Figure 9 shows the average pixel ing six corresponding points, with the assumption that
errors over 10 trials (one particular object, the same mo- four of those points are projected from four coplanar
tion as before). The average error fluctuates around 1.6 points in space, or alternatively by having eight cor-
pixels. Also shown is the result of re-projection on a typ- responding points without assumptions on coplanarity.
ical trial with average error of 1.05 pixels, and maximal The overall method for reconstructing projective struc-
error of 5.41 pixels. The match between the re-projected ture and achieving re-projection was referred to as the 6-
image and the novel image is relatively good considering point and the 8-point algorithms. These algorithms have
the amount of noise added. the unique property that projective structure can be re-

covered from both orthographic and perspective images
10.3 Random Noise Case 2 from uncalibrated cameras. This property implies, for
A more realistic situation occurs when the magnitude of instance, that we can perform recognition of a perspec-
noise associated with the privileged six points is much 11 tive image of an object given two orthographic images as
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for the case z = 125. The average error is 1.31 and the maximal error is 7.1.

S:.:."* . ."

2 .110. -.

S1.20 -

0.900

1 4 7 10

Random Error Trials

Figure 9: Random noise added to all image points, over all views, for 10 trials. Average pixel error fluctuates around
1.6 pixels. The result of re-projection on a typical trial with average error of 1.05 pixels, and maximal error of 5.41
pixels.

a model. It also implies greater stability because the size jectivity is completely determined by four corresponding
of the field of view is no longer an issue in the process of points.
reconstructing shape or performing re-projection.

Geometric Illustration
Acknowledgments Consider the geometric drawing in Figure 11. Let

A, B, C, U be four coplanar points in the scene, and let
I want to thank David Jacobs and Shimon Ullman for A', B', C', U' be their projection in the first view, and
discussions and comments on this work. A", B", C", U" be their projection in the second view.

By construction, the two views are projectively related
A Fundamental Theorem of Plane to each other. We further assume that no three of the

Projectivity points are collinear (four points form a quadrangle), and
without loss of generality let U be located within the

The fundamental theorem of plane projectivity states triangle ABC. Let BC be the z-axis and BA be the
that a projective transformation of the plane is com- y-axis. The projection of U onto the x-axis, denoted by
pletely determined by four corresponding points. We U(, is the intersection of the line AU with the z-axis.
prove the theorem by first using a geometric drawing, Similarly Uy is the intersection of the line CU with the
and then algebraically by introducing the concept of rays y-axis. because straight lines project onto straight lines,
(homogeneous coordinates). The appendix ends with the we have that Uz, U, correspond to U,, Uy if and only if U
system of linear equations for determining the correspon- corresponds to U'. For any other point P, coplanar with
dence of all points in the plane, given four corresponding ABCU in space, its coordinates Ps, P. are constructed
points (used repeatedly throughout this paper). in a similar manner. We therefore have that B, U:, P., C

Definitions: A perspectivity between two planes is are collinear and therefore the cross ratio must be equal
defined as a central projection from one plane onto the to the cross ratio of B', U,,' P, , C', i.e.
other. A projectivity is defined as made out of a finite BC • UP: B'C' .UP,'

sequence of perspectivities. A projectivity, when repre-
sented in an algebraic form, is called a projective trans- BP: • U:C B'P• . U1 C'
formation. The fundamental theorem states that a pro- 12 This form of cross ratio is known as the canonical cross



0.44

qC0.33

1 4 710

Random Error to Non-privileged Points Trials

Figure 10: Random noise added to non-privileged image points, over all views, for 10 trials. Average pixel error
fluctuates around 0.5 pixels. The result of re-projection on a typical trial with average error of 0.52 pixels, and
maximal error of 1.61 pixels.

p A Algebraic Derivation
y YY From an algebraic point of view it is convenient to view

points as laying on rays emanating from the center of
U reference projection. A ray representation is also called the homo-

plane geneous coordinates representation of the plane, and is
B \achieved by adding a third coordinate. Two vectors rep-

resent the same point X = (x, y, z) if they differ at most
"% uX by a scale factor (different locations along the same ray).
A % P . A key result, which makes this representation amenable

% to application of linear algebra to geometry, is described
A' %(\ / % AN in the following proposition:A',/%p"

p' \Proposition 5 A projectivity of the plane is equivalent
img I Y to a linear transformation of the homogeneous represen-

image u Y image tation.
plaiie u plane

/• B" The proof is omitted here, and can be found in Tuller
"B, 1 (1967, Theorems 5.22, 5.24). A projectivity is equiv-

i' \ \ alent, therefore, to a linear transformation applied to
X/"% the rays. Because the correspondence between points/ / %,,,,%, and coordinates is not one-to-one, we have to take scalar

% % % %factors of proportionality into account when represent-%%'-% ing a projective transformation. An arbitrary projective

I, transformation of the plane can be represented as a non-
v2  singular linear transformation (also called collineation)

pX' = TX, where p is an arbitrary scale factor.
V Given four corresponding rays pj = (xj, yj, 1)

p = (xý, y', 1), we would like to find a linear transfor-

Figure 11: The geometry underlying plane projectivity mation T and the scalars p, such that Pjp = Tpý . Note
from four points. that because only ratios are involved, we can set p4 = 1.

The following are a basic lemma and theorem adapted
from Semple and Kneebone (1952).

ratio. In general there are 24 cross ratios, six of which are Lemma 1 Ifpi, ..., p4 are four vectors in R3, no three of
numerically different (see Appendix B for more details which are linearly dependent, and if e,, ... , e4 are respec-
on cross-ratios). Similarly, the cross ratio along the y- tively the vectors (1, 0, 0), (0, 1,0), (0,0, 1), (1, 1, 1), there
axis of the reference frame is equal to the cross ratio of exists a non-singular linear transformation A such that
the corresponding points in both views. Aej = Ajpj, where the Aj are non-zero scalars; and the

Therefore, for any point p' in the first view, we con- matrices of any two transformations with this property
struct its z and y locations, p' ,/,, • along B'C. and B'A', differ at most by a scalar factor.
respectively. From the equality of cross ratios we find
the locations of p,",p and that leads to p". Because Proof: Let pi have the components (xj, yi, 1), and with-
we have used only projective constructions, i.e. straight out loss of generality let A4 = 1. The matrix A satisfies
lines project to straight lines, we are guaranteed that p' three conditions Aej = Aipj, j = 1,2,3 if and only if
and p" are corresponding points. 13 Aipi is the j'th column of A. Because of the fourth con-



dition, the values A1 , A2 , A3 satisfy A

A PY
[Pl,P2,] (1 =\p4 2 P \

A3 B C

and since, by hypothesis of linear independeice of
P1,P2,P3, the matrix IP2,P3] is non-singular, the Aj J I \ % J A' \
are uniquely determined and non-zero. The matrix A is / \
therefore determined up to a scalar factor. 0 o%

Theorem 4 If pl,...,p4 and p' 1,...,p'4 are two sets of W

four vectors in no three vectors in either set be- / ,,,
ing linearly dependent, there exists a non-singular linear I I.
transformation T such that Tpi = pjpj (j = 1 ... ,4), / / /
where the pj are scalars; and the matrix T is uniquely A"
determined apart from a scalar factor. IA, /
Proof: By the lemma, we can solve for A and Aj that P"
satisfy Aej = Ajpj (j = 1, ...,4), and similarly we can a,*
choose B and p, to satisfy Bej = pjpj'; and without loss p' ' /
of generality assume that A4 = 04 = 1. We then have, C"
T = BA- 1 and pj = ,.L If, further, Tpj = pjpj and

Up.- .p , then TAej = pjAjp' and UAej = oAjp'; Figure 12: Setting a projectivity under parallel projec-
and therefore, by the lemma, TA = rUA, i.e., T = rV] tion.
for some scalar r.

The immediate implication of the theorem is that one
can solve directly for T and pj (p4 = 1). Four points The standard way to proceed is to assume that both
provide twelve equations and we have twelve unknowns image planes are parallel to their xy plane with a focal
(nine for T and three for pi). Furthermore, because the length of one unit, or in other words to embed the in-
system is linear, one can look for a least squares solu- age coordinates in a 3D vector whose third component
tion by using more than four corresponding points (they is 1. Let pj = (z-, y-, 1) and p'. = (xz, V, 1) be the the
all have to be coplanar): each additional point provides chosen representation of image points. The true coordi-
three more equations and one more unknown (the p as- nates of those image points may be different (if the image
sociated with it). plane are in different positions than assumed), but the

Alternatively, one can eliminate pj from the equations, main point is that all such representations are projec-
set T3 ,3 = 1 and set up directly a system of eight lin- tively equivalent to each other. Therefore, pjpj = BPj
ear equations as follows. In general we have four cor- and p.p = C where Pj and gi are the true image
responding rays pj = (zj, yj, zj) --- pý = (zx, y', zi), coordinates of tlese points. If T is the projective trans-
j = 1, ...,4, and the linear transformation T satisfies formation determined by the four corresponding points
ejpp = Tpi. By eliminating pj, each pair of correspond- j - A, then A = CTB-' is the projective transfor-
ing rays contributes the following two linear equations: mation between the assumed representations pj - p'..

Therefore, the matrix A can be solved for directly
- zlZ; from the correspondences pj +-- pj (the system of

xjtl,1  + yjtl,2  + Zjtl,3  - t3, - ' '" -= -

z. z. z. eight equations detailed in the previous section). For
I any given point p = (z, y, 1), the corresponding point

a12t2,1 + Yjt 2 ,2 + Ztt2,3 - ty- = (x', y/, 1) is determined by Ap followed by normal-
2 "-- -- z ization to set the third component back to 1.

A similar pair of equations can be derived in the case A.1 Plane Projectivity in Affine Geometry
z• = 0 (ideal points) by using either z• or yj (all threecannot be zero). In parallel projection we can take advantage of the fact

that parallel lines project to parallel lines. This allows to
define coordinates on the plane by subtending lines par-

Projectivity Between Two image Planes of an allel to the axes (see Figure 12). Note also that the two
Uncalibrated Camera trapezoids BBepp and BB'C'C are similar trapezoids,

We can use the fundamental theorem of plane pro- therefore,
jectivity to recover the projective transformation that BC B'C'
was illustrated geometrically in Figure 11. Given four pG = -- "
corresponding points (zj, yj) ,-- (z, $) that are pro-
jected from four coplanar points in space we would like This provides a geometric derivation of the result that
to find the projective transformation A that accounts three points are sufficient to set up a projectivity be.-
for all other correspondences (z, y) - (z', y/) that are tween any two planes under parallel projection.
projected from coplanar points in space. 14' Algebraically, a projectivity of the plane can be



A ' The cross-ratio of rays is computed algebraically
through linear combination of points in homogeneous
coordinates (see Gans 1969, pp. 291-295), as follows.

~b Let the the rays a,b,c,d be represented by vectors
B (aj,a2 ,a 3 ),...,(dj,d 2 ,da), respectively. We can repre-

sent the rays a, d as a linear combination of the rays
C. b, c, by

C a= b+kc
C d = b + k'c

d For example, k can be found by solving the linear system

of three equation pa = b + kc with two unknowns p, k
Figure 13: The cross-ratio of four distinct concurrent (one can solve using any two of the three equations, or
rays is equal to the cross-ratio of the four distinct points find a least squares solution using all three equations).
that result from intersecting the rays by a transversal. We shall assume, first, that the points are Euclidean.

The ratio in which A divides the line BC can be derived
by:

uniquely represented as a 2D affine transformation of the AB P - - L b,+kc, L
non-homogeneous coordinates of the points. Namely, if C= 3 b3 = b3+kC3- b3  kc
p = (z, y) and p' = (z', y') are two corresponding points, a3  Cs o3b+k3 C3

then Similarly, we have Z = -k'c and, therefore, the cross-
p' = Ap + w ratio of the four rays is a = k . The same result holds

where A is a non-singular matrix and w is a vector. The under more general conditions, i.e., points can be ideal
six parameters of the transformation can be recovered as well:
from two non-collinear sets of three points, P., Pi, p2 and Proposition 6 If A, B, C, D are distinct coinear
Po, PP'- Let points, with homogeneous coordinates b+ kc, b, c, b+ k'c,

, -1 then the canonical cross-ratio is [k-'J- ZoX'2 - ' X -- 2o,X2 - klo
AY - Yo, 12 - Yo (for a complete proof, see Gans 1969, pp. 294-295). Forour purposes it is sufficient to consider the case when

and w = p'. - Ap., which together satisfy pj - p' = one of the points, say the vector d, is ideal (i.e. d3 = 0).
A(pj - po) for j = 1,2. For any arbitrary point p on From the vector equation pd = b + k'c, we have that
the plane, we have that p is spanned by the two vectors k' = -l and, therefore, the ratio RD = 1. As a result,
Pi -Po and P2-Po, i.e., p = al(P1 -Po)+a2(P2-Po); and the cross-ratio is determined only by the first term, i.e.,
because translation in depth is lost in parallel projection, a = .0 = k - which is what we would expect if we
we have that p' = al(pl1 -P,)+a2(P 2 -p,), and therefore represented points in the Euclidean plane and allowed
p' - p' = A(p - p.). the point D to extend to infinity along the line A, B, C, D

(see Figure 13).
B Cross-Ratio and the Linear The derivation so far can be translated directly to our

Combination of Rays purposes of computing the projective shape constant by
replacing a, b, c, d with p', 5,V5', VI, respectively.

The cross-ratio of four collinear points A, B, C, D is pre-
served under central projection and is defined as: C On Epipolar Transformations

AB DB A'B' V B' Proposition 7 The epipolar lines pVr and p'V" are per-
.w= AC " DC = A'C' - D'C" spectively related.

(see Figure 13). All permutations of the four points Proof: Consider Figure 14. We have already estab-
are allowed, and in general there are six distinct cross- lished that p projects onto the left epipolar line p'V1 .
ratios that can be computed from four collinear points. By definition, the right epipole V, projects onto the left
Because the cross-ratio is invariant to projection, any epipole 1I, therefore, because lines are projective invari-
transversal meeting four distinct concurrent rays in four ants the line pV,. projects onto the line p'1. fl
distinct points will have the same cross ratio - therefore The result that epipolar lines in one image are per-
one can speak of the cross-ratio of rays (concurrent or spectively related to the epipolar lines in the other im-
parallel) a, b, c, d. age, implies that there exists a projective transformation

The cross-ratio result in terms of rays, rather than F that maps epipolar lines Ij onto epipolar lines i1, that
points, is appealing for the reasons that it enables the ap- is FIj = pjl,, where ij = pi x V, and I= = pj' x VI. From
plication of linear algebra (rays are represented as points the property of point/line duality of projective geome-
in homogeneous coordinates), and more important, en- try (Semple and Kneebone, 1952), the transformation
ables us to treat ideal points as any other point (critical E that maps points on left epipolar lines onto points on
for having an algebraic system that is well defined under the corresponding right epipolar lines is induced from F,
both central and parallel projection). 15 i.e., E = (F- 1 )t .



reference
F-: ;• plane

lmaqe imaqe
plane P", plane

V2V

~ ~ ~ ~~~~~~~~~~~~.... .... "....." .......--.................. ..........................

Figure 14: Epipolar lines are perspectively related. 2 ......-.-.. ... "........................................................°°....

Proposition 8 (point/line duality) The VI
transformation for projecting p onto the left epipolar line
p i, is E = (F-')'. Figure 15: See text.

Proof: Let 1, 1' be corresponding epipolar lines, related
by the equation pl' = Fl. Let p,p' be any two points, The epipolar transformation, therefore, has three free
one on each epipolar line (not necessarily corresponding Thete r (onsformale, therefore case the
points). From the point/line incidence axiom we have parameters (one for scale, the other two because the
that I' • p = 0. By substituting i we have equation Fl 3 - p313 has dropped out).

[pF-1l']' p = 0 * pl" - [F-'p] = 0. D Affine Structure in Projective Space

Therefore, the collineation E = (F- 1 )' maps points p Proposition 10 The afline structure invariant, based
onto the corresponding left epipolar line. g7 on a single reference plane and a reference point, cannot

It is intuitively clear that the epipolar line transforma- be directly etended to central projection.
tion F is not unique, and therefore the induced trans- Proof: Consider the drawing in Figure 15. Let Q be
formation E is not unique either. The correspondence the reference point, P be an arbitrary point of interest
between the epipolar lines is not disturbed under trans- in space, and Q, P be the projection of Q and P onto
lation along the line V1 V2 , or under non-rigid camera the reference plane (see section 4 for definition of affine
motion that results from tilting the image plane with re- structure under parallel projection).
spect to the optical axis such that the epipole remains The relationship between the points P, Q,/P, Q and
on the line V1V2 . the points p',P, q', 4' can be described as a perspectivity

Proposition 9 The epipolar transformation F is not between two triangles. However, in order to establish
unique, an invariant between the two triangles one must have a

coplanar point outside each of the triangles, therefore the
Proof: A projective transformation is determined five corresponding points are not sufficient for determin-

by four corresponding pencils. The transformation is ing an invariant relation (this is known as the 'five point
unique (up to a scale factor) if no three of the pencils are invariant' which requires that no three of the points be
linearly dependent, i.e., if the pencils are lines, then no collinear){]
three of the four lines should be coplanar. The epipolar
line transformation F can be determined by the corre- E On the Intersection of Epipolar Lines
sponding epipoles, V, -- V1, and three corresponding
epipolar lines 1i .--. 1i. We show next that the epipolar Barret et al. (1991) derive a quadratic invariant based
lines are coplanar, and therefore, F cannot be deter- on Longuet-Higgins' fundamental matrix. We describe
mined uniquely. briefly their invariant and show that it is equivalent to

Let p, and p, j = 1,2,3, be three corresponding performing re-projection using intersection of epipolar
points and let 1i = pj x V, and I';= pý x V. ' Let lines.

p3 = api + #P2, a +,3 = 1, be a point on the epipo- In section 8 we derived Longuet-Higgins' fundamental
lar line p3V, collinear with Pl,P2. We have, matrix relation p" Hp = 0. Barret et al. note that the

equation can be written in vector form h' -q = 0, where
13 = p3 x V, = (afh + bV,) x V, = ap3 x Vt = aall + a#i 2 , h contains the elements of H and

and similarly I3 = c'l' + 01 . 16 q = (z'z' z'y, z', y'z, y'y, y',z,lI, 1).
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p't f = 0, June 1992.
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